Extra Chance Generalized Hybrid Monte Carlo
نویسندگان
چکیده
Article history: Received 28 July 2014 Received in revised form 25 September 2014 Accepted 30 September 2014 Available online 7 October 2014
منابع مشابه
Bayesian Estimation of GARCH Model by Hybrid Monte Carlo
The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other ...
متن کاملGeneralized Hybrid Monte-carlo
We propose a modification of the Hybrid Monte-Carlo method to sample equilibrium distributions of continuous field models. The method allows an efficient implementation of Fourier acceleration and is shown to reduce completely critical slowing down for the Gaussian model, i. e., z = 0.
متن کاملA Metropolis Adjusted Nosé-hoover Thermostat
We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nosé-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step. Mathematics Subject Classific...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملSimulated Annealing Using Hybrid Monte Carlo
We propose a variant of the simulated annealing method for optimization in the multivhriate analysis of differentiable functions. The method uses global actualizations via the hybrid Monte Carlo algorithm in their generalized version for the proposal of new configurations. We show how this choice can improve upon the performance of simulated annealing methods (mainly when the number of variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 281 شماره
صفحات -
تاریخ انتشار 2015